Anytime automatic algorithm selection for the Pseudo-Boolean Optimization problem.
Loading...
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
Machine learning (ML) techniques have been proposed to automatically select the best solver from a portfolio of solvers, based on predicted performance. These techniques have been applied to various problems, such as Boolean Satisfiability, Traveling Salesperson, Graph Coloring, and others. These methods, known as meta-solvers, take an instance of a problem and a portfolio of solvers as input, then predict the best-performing solver and execute it to deliver a solution. Typically, the quality of the solution improves with a longer computational time. This has led to the development of anytime selectors, which consider both the instance and a user-prescribed computational time limit. Anytime meta-solvers predict the best-performing solver within the specified time limit. In this study, we focus on the task of designing anytime meta-solvers for the NP-hard optimization problem of Pseudo-Boolean Optimization (PBO). The effectiveness of our approach is demonstrated via extensive empirical study in which our anytime meta-solver improves dramatically on the performance of Mixed Integer Programming solver Gurobi, the best-performing single solver in the portfolio.
Description
Tesis presentada para optar al grado de MagĆster en Ciencias de la Computación.