Estudio mecanístico mediante espectroscopía infrarroja in situ de la oxidación selectiva de metanol sobre catalizadores de molibdeno y vanadio.

dc.contributor.advisorKarelovic Burotto, Alejandro Ivánes
dc.contributor.authorFuentes Soto, Bastián Alexises
dc.date.accessioned2025-12-22T15:39:21Z
dc.date.available2025-12-22T15:39:21Z
dc.date.issued2025
dc.descriptionTesis presentada para optar al grado de Magíster en Ciencias de la Ingeniería con mención en Ingeniería Química.es
dc.description.abstractMethanol oxidative dehydrogenation on titania supported metal oxide catalysts was studied to clarify different mechanistic proposals reported in the literature. Operando spectroscopic and isotopic transient experiments under controlled reaction conditions, combined with correlations between catalyst structure and product distribution, revealed how the nature of redox sites governs the methyl formate formation and integrates the reaction pathways into a coherent framework. Sub-monolayer MoO3/TiO2 and V2O5/TiO2 catalysts, dominated by highly dispersed interfacial M–O–Ti linkages (M = Mo, V), stabilize formate-type intermediates which favor methyl formate production through the formate–mediated route. In contrast, catalysts featuring crystalline M–O–M domains promote the hemiacetal intermediate, where less stabilized intermediates lead directly to methyl formate and dimethoxymethane formation. These results indicate a common mechanistic framework for both Mo– and V–based systems, in which the dominant pathway is selectively expressed depending on the nature and distribution of redox sites rather than on the metal identity itself. Isotopic labeling and transient experiments rule out extensive methoxy exchange and the Tishchenko pathway for methyl formate formation, under the studied conditions. Differences in intermediates stabilization, active sites distribution, and kinetic isotope effects account for the observed variations in reaction orders and selectivity. Overall, the study demonstrates that the formation of oxygenates in methanol oxidative dehydrogenation critically depends on the type of redox site involved, establishing a structural – mechanistic framework that rationalizes the behavior of MoO3/TiO2 and V2O5/TiO2 catalysts and can be extended to other reducible oxide systems engaged in selective oxidation reactions.en
dc.description.campusConcepciónes
dc.description.departamentoDepartamento de Ingeniería Químicaes
dc.description.facultadFacultad de Ingenieríaes
dc.description.sponsorshipANID, Proyecto N°1221281es
dc.identifier.urihttps://repositorio.udec.cl/handle/11594/13525
dc.language.isoenen
dc.publisherUniversidad de Concepciónes
dc.rightsCC BY-NC-ND 4.0 DEED Attribution-NonCommercial-NoDerivs 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectEspectroscopía infrarrojaes
dc.subjectCatalizadoreses
dc.subjectOxidaciónes
dc.subjectMetanoles
dc.subject.odsINDUSTRIA, innovación, infraestructuraes
dc.subject.odsAcción CLIMÁTICAes
dc.titleEstudio mecanístico mediante espectroscopía infrarroja in situ de la oxidación selectiva de metanol sobre catalizadores de molibdeno y vanadio.es
dc.typeThesisen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fuentes_s_b_2025_MAG_CI.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections