Browsing by Author "Inzunza Herrera, Daniel Eduardo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Implicit-explicit methods for nonlinear and nonlocal convection-diffusion-reaction problems = Métodos implícitos-explícitos para problemas de convección-difusión-reacción no lineales y no locales.(Universidad de Concepción., 2019) Inzunza Herrera, Daniel Eduardo; Bürger, Raimund; Villada Osorio, Luis MiguelEn este trabajo de tesis se desarrollan métodos numéricos de alto orden para aproximar la solución de ecuaciones no lineales y no locales con estructura de flujo de tipo gradiente. Especificamente se plantean esquemas numéricos para modelos de agregación y para problemas de convección-difusión. La tesis tiene los siguientes objetivos. El primer objetivo de esta tesis es plantear un esquema de alto orden para un ecuación no lineal y no local con flujo de tipo gradiente, analizando sus propiedades y aplicaciones tanto para el caso unidimensional como para el vaso multi-dimensional. El segundo objetivo de esta tesis es mostrar que los esquemas Implícitos-Explícitos RungeKutta (IMEX-RK) permiten obtener una solución numérica eficiente tanto del error generado como también del tiempo de cálculo computacional para los problemas de convección-difusión con términos no locales y no lineales. Estos esquemas consisten el trabajar la parte convectiva mediante tratamiento de esquemas Runge-Kutta, y la parte difusiva mediante esquemas implícitos. Para esta última, al discretizar el esquema implícito resultante, se obtiene un sistema de ecuaciones no lineal, el cual se resuelve mediante el método de Newton-Raphson con algoritmo de descenso. El esquema resultante obtiene una condición CFL menos restrictiva en comparación con un esquema explícito. El tercer objetivo de esta tesis es mostrar una aplicación de los esquemas de alto orden a los modelos de dinámica de poblaciones y movimiento de peatones, mostrando que para discretizaciones gruesas de la malla computacional las soluciones numéricas obtenidas tienen mejor resolución comparadas con las que se obtienen con esquemas de primer orden.Item Productos interiores No-arquimedeanos(Universidad de Concepción., 2011) Inzunza Herrera, Daniel Eduardo; Aguayo Garrido, JoséDesde 1945 se ha intentado definir, de manera apropiada, un producto interior no-arquimedeano y con ello un espacio con producto interior no-arquimedeano. Estos espacios muestran una cercana analogía con los espacios de Hilbert clásicos pero, al contrario de estos, no son ortomodulares: es decir, dado X espacio de Banach y M X subespacio, se tiene M?? = M () X = M M? (1) La existencia de un espacio no arquimedeano de dimensión infinita (no clásico) ortomodular fue una pregunta abierta durante cierto tiempo, hasta que A. Keller dio una respuesta positiva en 1980 [10]. Tales espacios deben ser poco comunes, según el siguiente teorema de M.P. Solér [11]: “Sea X un espacio ortomodular y supongamos que contiene una sucesión ortonormal e1, e2, . . .(en el sentido del producto interior). Entonces el campo de base es R o C y X es un espacio de Hilbert clásico”. El objetivo de este trabajo es lograr definir un producto interior sobre un espacio de Banach E, y analizar las condiciones necesarias y suficientes para que los subespacios cerrados de E admitan un complemento normal. En particular, se enfocará el estudio al espacio de Banach c0(T). Esta tesis está estructurada de la siguiente forma: en el Capítulo 1 se revisan algunas definiciones y resultados necesarios para el desarrollo de este trabajo. Así, por ejemplo, se estudian los campos y espacios ultramétricos. Además, de definir los espacios de Banach c0(T) y `1(T) se demuestra que todo espacio que tiene una base es linealmente homeomorfo a algún c0(T). Por otro lado, con la idea de utilizar conjuntos compactos que también son convexos, se definen los conjunto compactoides, y se muestran algunas propiedades generales sobre éstos.