Contaminación con microplásticos: evaluación de sus efectos sobre el sistema suelo-planta
Loading...
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
Los microplásticos (MPs) son plásticos de un tamaño entre 0.1 μm y 5 mm, estos pueden ser fabricados intencionadamente pequeños o generarse por la fragmentación de plásticos más grandes. Su creciente presencia en suelos representa un desafío ambiental, afectando las propiedades físicas, químicas y biológicas del suelo. Al realizar una de las primeras revisiones sistemáticas de la literatura se evidenció que los MPs alteran el ciclo del nitrógeno (N) en varias áreas; actúando como sustrato para microorganismos, alterando las comunidades microbianas/enzimas, afectando la fauna del suelo lo que altera la dinámica de descomposición de materia orgánica y la disponibilidad de nutrientes.
Se establecieron microcosmos para estudiar el efecto de los MPs en un Andisol, evidenciando que MPs de poliamida (PA) y polietileno de baja densidad (LDPE) aumentaron el carbono orgánico total (TOC) y amonio (NH4+), acompañado de una disminución de fosfato (PO43−), nitrato (NO3−) y disminución en la actividad β-glucosidasa. Además, se determinó que TOC y fosforo total (TP) pueden ser usados como parámetros químicos predictores de cambios microbiológicos en un Andisol contaminado con MPs.
Al estudiar los efectos en un sistema suelo-planta, se evidenció que plantas de Raphanus sativus crecidas en un Andisol con MPs incrementaron su biomasa y el contenido relativo de clorofila en los tratamientos con PA, LDPE y polipropileno (PP), sin embargo, hubo un aumento en el estrés oxidativo además de una alteración en los perfiles de compuestos bioactivos, como antocianinas y glucosinolatos en la raíz comestible, especialmente con PP. Además, se identificó al carbono de biomasa microbiana (MBC) y los polifenoles como parámetros de suelo predictores de cambio de R. sativus crecidos en suelo contaminado con MPs.
Estos resultados subrayan los riesgos a largo plazo de la contaminación por MPs, tanto para el suelo como para la calidad de los cultivos, lo que podría tener implicaciones para la seguridad alimentaria y la salud humana.
Microplastics (MPs) are plastics with a size between 0.1 μm and 5 mm, these can be intentionally manufactured to be small or result from the fragmentation of larger plastics. Their increasing presence in soils represents a significant environmental challenge, affecting the soil’s physical, chemical, and biological properties. In conducting one of the earliest systematic reviews of the literature, it was found that MPs disrupt the nitrogen (N) cycle in multiple areas; serving as a substrate for microorganisms, altering microbial communities and enzymes, and affecting soil fauna, which in turn impacts organic matter decomposition and nutrient availability. Microcosms were established to study the effect of MPs in an Andisol, showing that polyamide (PA) and low-density polyethylene (LDPE) MPs increased total organic carbon (TOC) and ammonium (NH4+), while reducing phosphate (PO43−), nitrate (NO3−), and β-glucosidase activity. Additionally, TOC and total phosphorus (TP) were identified as chemical parameters that can serve as predictors of microbiological changes in Andisol contaminated with MPs. When studying soil-plant system, it was found that R. sativus plants grown in an Andisol with MPs showed increased biomass and relative chlorophyll content in PA, LDPE, and polypropylene (PP) treatments. However, an increase in oxidative stress was also observed, along with changes in the profiles of bioactive compounds such as anthocyanins and glucosinolates in the edible root, particularly with PP. Microbial biomass carbon (MBC) and polyphenols were identified as key soil predictors of the responses of R. sativus grown in soil contaminated with MPs. These findings highlight the long-term risks of MP contamination, both for soil health and crop quality, with potential implications for food security and human health.
Microplastics (MPs) are plastics with a size between 0.1 μm and 5 mm, these can be intentionally manufactured to be small or result from the fragmentation of larger plastics. Their increasing presence in soils represents a significant environmental challenge, affecting the soil’s physical, chemical, and biological properties. In conducting one of the earliest systematic reviews of the literature, it was found that MPs disrupt the nitrogen (N) cycle in multiple areas; serving as a substrate for microorganisms, altering microbial communities and enzymes, and affecting soil fauna, which in turn impacts organic matter decomposition and nutrient availability. Microcosms were established to study the effect of MPs in an Andisol, showing that polyamide (PA) and low-density polyethylene (LDPE) MPs increased total organic carbon (TOC) and ammonium (NH4+), while reducing phosphate (PO43−), nitrate (NO3−), and β-glucosidase activity. Additionally, TOC and total phosphorus (TP) were identified as chemical parameters that can serve as predictors of microbiological changes in Andisol contaminated with MPs. When studying soil-plant system, it was found that R. sativus plants grown in an Andisol with MPs showed increased biomass and relative chlorophyll content in PA, LDPE, and polypropylene (PP) treatments. However, an increase in oxidative stress was also observed, along with changes in the profiles of bioactive compounds such as anthocyanins and glucosinolates in the edible root, particularly with PP. Microbial biomass carbon (MBC) and polyphenols were identified as key soil predictors of the responses of R. sativus grown in soil contaminated with MPs. These findings highlight the long-term risks of MP contamination, both for soil health and crop quality, with potential implications for food security and human health.
Description
Tesis presentada para optar al grado de Doctor en Ciencias de la Agronomía
Keywords
Microplásticos, Biomasa, Estrés oxidativo