Simulación y elección de estrategias de control para un rectificador AFE con filtro LCL.
Loading...
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
La memoria consiste en el estudio, análisis, diseño y simulación de un circuito rectificador de frente activo final (Active Front End Rectifier), el cual está conectado a un filtro pasa-bajo de tercer orden LCL en el lado de alterna. Esta topología es muy usada en aplicaciones industriales debido a su gran capacidad de filtrado y amortiguamiento de componentes armónicas y de rizado, así como también garantizar factor de potencia unitario, lo que supone una cantidad de potencia reactiva prácticamente despreciable en comparación a la potencia activa obtenida en el convertidor ac-dc, haciendo de esta topología una excelente opción en aplicaciones de baja, media y alta potencia. Durante este proceso, se investigó diferentes bibliografías para entender su funcionamiento, así como también calcular los parámetros y puntos de operación y simular el sistema para corroborar que está en orden. Se perfeccionó el modelo dinámico del sistema y la simulación correcta del mismo en lazo abierto, para luego seguir en la etapa de estudio y aplicación de Estrategias de Control en Lazo Cerrado. A esta topología se le estudia a aplicación de dos estrategias de lazo cerrado de control, las cuales son: a) el Control PID con Desacoplador Estático, y b) Control Predictivo Basado en Modelos (MPC). Se estudiaron, simularon y comparó cuál estrategia de control puede llegar más rápido al estado estacionario y protegiendo mejor tanto a los componentes del circuito de potencia como al o a los operadores de este, concluyendo que la estrategia que ejecuta mejor el proceso de conversión de flujo de energía de alterna a continua en términos de mitigación de perturbaciones y variación del factor de potencia es la estrategia predictiva, dada su mayor capacidad de anticipar cambios en las referencias de corriente y voltaje ingresados al controlador.
The report consists of the study, analysis, design and simulation of an Active Front End Rectifier circuit, which is connected to a third order LCL low-pass filter on the AC side. This topology is widely used in industrial applications due to its great capacity for filtering and damping harmonics and ripple components, as well as guaranteeing unity power factor, which means a practically negligible amount of reactive power compared to the active power obtained in the a.c-d.c converter, making this topology an excellent option in low, medium and high power applications. During this process, different bibliographies were researched to understand its operation, as well as to calculate the parameters and operating points and simulate the system to corroborate that it is in order. The dynamic model of the system and the correct simulation of the system in open loop was perfected, to then continue in the stage of study and application of Closed Loop Control Strategies. The application of two closed-loop control strategies is studied in this topology: a) PID Control with Static Decoupler, and b) Model Based Predictive Control (MPC). It was studied, simulated and compared which control strategy can reach the steady state faster and better protect both the components of the power circuit and the operator(s) of this, concluding that the strategy that best executes the process of power flow conversion from a.c to d.c in terms of mitigation of disturbances and variation of the power factor is the predictive strategy, given its greater ability to anticipate changes in the current and voltage references entered to the controller.
The report consists of the study, analysis, design and simulation of an Active Front End Rectifier circuit, which is connected to a third order LCL low-pass filter on the AC side. This topology is widely used in industrial applications due to its great capacity for filtering and damping harmonics and ripple components, as well as guaranteeing unity power factor, which means a practically negligible amount of reactive power compared to the active power obtained in the a.c-d.c converter, making this topology an excellent option in low, medium and high power applications. During this process, different bibliographies were researched to understand its operation, as well as to calculate the parameters and operating points and simulate the system to corroborate that it is in order. The dynamic model of the system and the correct simulation of the system in open loop was perfected, to then continue in the stage of study and application of Closed Loop Control Strategies. The application of two closed-loop control strategies is studied in this topology: a) PID Control with Static Decoupler, and b) Model Based Predictive Control (MPC). It was studied, simulated and compared which control strategy can reach the steady state faster and better protect both the components of the power circuit and the operator(s) of this, concluding that the strategy that best executes the process of power flow conversion from a.c to d.c in terms of mitigation of disturbances and variation of the power factor is the predictive strategy, given its greater ability to anticipate changes in the current and voltage references entered to the controller.
Description
Tesis presentada para optar al título de Ingeniero/a Civil Electrónico/a.
Keywords
Rectificadores de corriente eléctrica, Circuitos de control, Reguladores eléctricos