Caracterización de la expresión de la familia de FGFs y FGFRs en la placa del techo diencefálica durante estadios embrionarios tempranos.
Loading...
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
Los centros organizadores cerebrales son agrupaciones celulares situadas en las fronteras morfológicas que tienen la capacidad de secretar moléculas señalizadoras como las proteínas morfogénicas óseas (BMPs, bone morphogenic proteins), wingless (Wnts) o factores de crecimiento de fibroblastos (FGF), las cuales influyen en la determinación de la identidad neuronal o glial en células neuroepiteliales adyacentes. Adicionalmente, los centros organizadores secundarios presentan un patrón diferencial de factores de transcripción, diferentes a las zonas aledañas. A la luz de este concepto, el órgano subcomisural (OSC) emerge como un candidato potencial para cumplir con las características de un centro organizador cerebral. Esto se sustenta en su ubicación estratégica en la interfaz entre el diencéfalo y el mesencéfalo, su diferenciación muy temprana como glándula cerebral, su expresión de diversos factores de transcripción, receptores (incluyendo leptina y FGF) y la secreción de OSC-espondina, una proteína vinculada con la proliferación y diferenciación del neuroepitelio y guía axonal. Basándonos en esta información, planteamos la hipótesis de que el OSC podría operar como un centro organizador cerebral secundario. Para dilucidar la función del OSC se realizaron análisis de RNA-seq en dos estadios, validación por RT-qPCR, identificación de proteínas mediante western blot y localización mediante inmunofluorescencia. Nuestro análisis transcriptómico de OSC en estadios HH23 (4 días de desarrollo) y HH30 (7 días de desarrollo) en embriones de pollo revela que el OSC opera como una glándula altamente secretora, con productos que pueden ser clasificados en tres grupos principales, que no son excluyentes entre sí. En primer lugar, identificamos moléculas implicadas en la guía axonal y la neurogénesis. En segundo lugar, encontramos una variedad de moléculas relacionadas con la secreción y la matriz extracelular. Por último, observamos la presencia de factores de crecimiento y hormonas en el OSC. Dentro de los múltiples productos secretorios encontrados, se analizó en detalle la expresión de diversos receptores de FGF en el techo diencefálico. Nuestra evidencia sugiere que el OSC podría secretar FGF hacia el líquido cefalorraquídeo, lo que podría activar señalización paracrina en el neuroepitelio cercano. Además, la presencia de receptores de FGF en el propio OSC sugiere la posibilidad de una señalización autocrina en esta región. Los resultados obtenidos sugieren fuertemente un rol morfogénico del OSC, y apoyan la hipótesis de que sería un nuevo centro organizador cerebral.
Secondary brain organizer centers are cellular clusters located at morphological boundaries that have the capacity to secrete signaling molecules such as BMP, Wnts or FGF, which influence the determination of neuronal or glial identity in the adjacent neuroepithelial cells. This establishes the SCO as a potential candidate for a brain organizing center during early brain development. This notion is supported by several aspects. Firstly, the SCO is strategically located between the diencephalon and midbrain. In its epithelium, it expresses a diversity of receptors, including leptin and FGF, and it secretes SCO-spondin, a protein mostly associated with axonal guidance. These factors collectively position the SCO as a focal point for signaling. Based on this information, we hypothesized that the SCO might operate as a secondary brain organizing center. To elucidate the function of the SCO an initial two-stage RNA-seq analysis was performed validating specific genes using RT-qPCR. Proteins of interest were identified and localized using western blot and immunofluorescence respectively. Our transcriptomic analysis of the SCO at HH23 and HH30 stages in chick embryos reveals that the SCO functions as a highly secretory gland. Its products can be classified into three groups, which are not mutually exclusive. The first group is mostly formed by molecules related to axonal guidance and neurogenesis. While the second group comprises a diverse range of molecules related to secretion and the extracellular matrix. Lastly, we have observed the presence of growth factors and hormones within the SCO. Specifically, we analyzed the expression of several FGFR in the diencephalic roof plate. Our evidence suggests that the SCO may secrete FGF into the cerebrospinal fluid, which could activate paracrine signaling in not only the nearby neuroepithelium but in the SCO itself suggesting the possibility of autocrine signaling.
Secondary brain organizer centers are cellular clusters located at morphological boundaries that have the capacity to secrete signaling molecules such as BMP, Wnts or FGF, which influence the determination of neuronal or glial identity in the adjacent neuroepithelial cells. This establishes the SCO as a potential candidate for a brain organizing center during early brain development. This notion is supported by several aspects. Firstly, the SCO is strategically located between the diencephalon and midbrain. In its epithelium, it expresses a diversity of receptors, including leptin and FGF, and it secretes SCO-spondin, a protein mostly associated with axonal guidance. These factors collectively position the SCO as a focal point for signaling. Based on this information, we hypothesized that the SCO might operate as a secondary brain organizing center. To elucidate the function of the SCO an initial two-stage RNA-seq analysis was performed validating specific genes using RT-qPCR. Proteins of interest were identified and localized using western blot and immunofluorescence respectively. Our transcriptomic analysis of the SCO at HH23 and HH30 stages in chick embryos reveals that the SCO functions as a highly secretory gland. Its products can be classified into three groups, which are not mutually exclusive. The first group is mostly formed by molecules related to axonal guidance and neurogenesis. While the second group comprises a diverse range of molecules related to secretion and the extracellular matrix. Lastly, we have observed the presence of growth factors and hormones within the SCO. Specifically, we analyzed the expression of several FGFR in the diencephalic roof plate. Our evidence suggests that the SCO may secrete FGF into the cerebrospinal fluid, which could activate paracrine signaling in not only the nearby neuroepithelium but in the SCO itself suggesting the possibility of autocrine signaling.
Description
Tesis presentada para optar al grado de Magister en Bioquímica y Bioinformática.