Herramienta integrada para el modelado de corrosión, estimación de vida útil estructural y costos de mantenimiento.
Loading...
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
La corrosión atmosférica en estructuras metálicas constituye un problema crítico en la ingeniería civil, dado su impacto en la vida útil, la seguridad estructural y los costos de mantenimiento. La motivación de esta memoria surge de la necesidad de contar con herramientas que integren criterios normativos, análisis estructural y proyecciones económicas, permitiendo decisiones de conservación más eficientes.
El objetivo principal fue desarrollar y validar una herramienta computacional que simula la progresión de la corrosión en perfiles de acero, ajusta automáticamente sus dimensiones en modelos de SAP2000 y vincula los resultados con un análisis de costos de mantenimiento. La metodología combinó la programación en Python con la API de SAP2000, integrando normas internacionales de corrosión (serie ISO 9223–9226) para estimar pérdidas de espesor, y criterios estructurales para calcular factores de utilización (FU). Adicionalmente, se implementó un modelo paramétrico de costos que permite comparar escenarios de intervención general y localizada, evaluando el efecto de variar recursos como número de cuadrillas, métodos de aplicación y equipos auxiliares.
Los resultados muestran que la herramienta permite identificar perfiles críticos, evidenciar redistribuciones de esfuerzos en miembros no corroídos, estimar de manera preliminar la vida útil remanente y asociar dichos parámetros con costos directos e indirectos de mantenimiento. Entre las conclusiones, se destaca que la estrategia de intervención óptima depende del balance entre extensión del área tratada, recursos disponibles y nivel de riesgo aceptado. La herramienta constituye un aporte práctico para la gestión de activos metálicos, entregando un marco reproducible, trazable y adaptable a distintas condiciones de exposición y operación.
Atmospheric corrosion in steel structures is a critical issue in civil engineering, given its impact on service life, structural safety, and maintenance costs. The motivation of this thesis arises from the need for tools that integrate normative criteria, structural analysis, and economic projections, enabling more efficient conservation decisions. The main objective was to develop and validate a computational tool that simulates the progression of corrosion in steel members, automatically adjusts their dimensions in SAP2000 models, and links the results with a maintenance cost analysis. The methodology combined Python programming with the SAP2000 API, integrating international corrosion standards (ISO 9223–9226 series) to estimate thickness loss, and structural criteria to calculate utilization factors (FU). Additionally, a parametric cost model was implemented to compare scenarios of general and localized interventions, evaluating the effect of varying resources such as number of crews, application methods, and auxiliary equipment. The results show that the tool allows the identification of critical members, highlights stress redistributions in non-corroded elements, provides preliminary estimates of remaining service life, and links these parameters to direct and indirect maintenance costs. The conclusions emphasize that the optimal intervention strategy depends on the balance between treated surface area, available resources, and the accepted risk level. The tool represents a practical contribution to the management of steel assets, offering a reproducible, traceable, and adaptable framework for different exposure and operational conditions.
Atmospheric corrosion in steel structures is a critical issue in civil engineering, given its impact on service life, structural safety, and maintenance costs. The motivation of this thesis arises from the need for tools that integrate normative criteria, structural analysis, and economic projections, enabling more efficient conservation decisions. The main objective was to develop and validate a computational tool that simulates the progression of corrosion in steel members, automatically adjusts their dimensions in SAP2000 models, and links the results with a maintenance cost analysis. The methodology combined Python programming with the SAP2000 API, integrating international corrosion standards (ISO 9223–9226 series) to estimate thickness loss, and structural criteria to calculate utilization factors (FU). Additionally, a parametric cost model was implemented to compare scenarios of general and localized interventions, evaluating the effect of varying resources such as number of crews, application methods, and auxiliary equipment. The results show that the tool allows the identification of critical members, highlights stress redistributions in non-corroded elements, provides preliminary estimates of remaining service life, and links these parameters to direct and indirect maintenance costs. The conclusions emphasize that the optimal intervention strategy depends on the balance between treated surface area, available resources, and the accepted risk level. The tool represents a practical contribution to the management of steel assets, offering a reproducible, traceable, and adaptable framework for different exposure and operational conditions.
Description
Tesis presentada para optar al título de Ingeniero/a Civil.
Keywords
Estructuras metálicas, Corrosión del acero, Simulación por computadores