Estimación de caudales máximos instantáneos para el periodo 2020 - 2060 a partir de caudales medios diarios obtenidos desde el modelo hidrológico Swat.
Loading...
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
La información fluviométrica es esencial para el diseño de diferentes obras civiles, desde puentes y caminos, hasta planes de emergencia y evacuación. Es por esto mismo que se necesita contar con datos de caudales simulados futuros, para poder evaluar las obras y planes existentes en un escenario incierto de cambio climático.
En este estudio, se recopiló información fluviométrica histórica y se desarrollaron modelos hidrológicos semi distribuidos para dos cuencas del centro-sur de Chile, el río Carampangue en Carampangue y el río Quepe en Quepe. Con estos modelos, se simularon caudales medios diarios futuros bajo diferentes escenarios de cambio climático, con el objetivo de evaluar su impacto en los caudales asociados a periodos de retorno característicos para el diseño de obras civiles. Para mejorar la precisión de estas estimaciones, se aplicó el método propuesto por Chen, que permite transformar los caudales medios diarios simulados en caudales máximos instantáneos. De esta manera, se obtuvieron estimaciones de caudales futuros para ambas cuencas.
Con estos caudales máximos instantáneos, se realizó el cálculo de caudales para distintos periodos de retorno, y se analizó el cambio que existe entre los determinados con los datos observados por la DGA, y con los datos simulados, en los periodos 1991-2020 y 2025-2054.
Estos modelos no fueron capaces de predecir de buena forma los caudales máximos.
Comparando ambos periodos antes mencionados se tienen distintas variaciones según el modelo de cambio climático utilizado.
En el caso del río Carampangue se ven aumentos de hasta 37% en los caudales de 100 años de periodo de retorno, y con otro modelo, reducciones de hasta un 33% para el caudal con el mismo de periodo de retorno. Para el río Quepe también se tiene un espectro de variaciones que van desde aumentar un 39%, hasta disminuciones de 21% para el caudal con periodo de retorno de 100 años.
Fluviometric information is essential for the design of various civil works, ranging from bridges and roads to emergency and evacuation plans. For this reason, it is necessary to have data on future simulated flows in order to assess existing infrastructure and plans in an uncertain climate change scenario. In this study, historical fluviometric information was collected, and semi-distributed hydrological models were developed for two watersheds in south-central Chile: The Carampangue River in Carampangue and the Quepe River in Quepe. Using these models, future daily mean flows were simulated under different climate change scenarios to assess their impact on the flows associated with characteristic return periods for civil engineering design. To improve the accuracy of these estimates, Chen's proposed method was applied, which transforms simulated daily mean flows into instantaneous peak flows. This allowed for future flow estimates to be obtained for both watersheds. With these instantaneous peak flows, flow calculations were made for different return periods, and the changes between those determined with observed data from the DGA and with simulated data for the periods 1991-2020 and 2025-2054 were analyzed. These models were not able to accurately predict peak flows. Comparing the two periods, there are various changes depending on the climate change model used. In the case of the Carampangue River, increases of up to 37% were observed for 100-year return period flows, while another model showed reductions of up to 33% for flows with the same return period. For the Quepe River, there is also a spectrum of variations, ranging from a 39% increase to a 21% decrease for the 100-year return period flow.
Fluviometric information is essential for the design of various civil works, ranging from bridges and roads to emergency and evacuation plans. For this reason, it is necessary to have data on future simulated flows in order to assess existing infrastructure and plans in an uncertain climate change scenario. In this study, historical fluviometric information was collected, and semi-distributed hydrological models were developed for two watersheds in south-central Chile: The Carampangue River in Carampangue and the Quepe River in Quepe. Using these models, future daily mean flows were simulated under different climate change scenarios to assess their impact on the flows associated with characteristic return periods for civil engineering design. To improve the accuracy of these estimates, Chen's proposed method was applied, which transforms simulated daily mean flows into instantaneous peak flows. This allowed for future flow estimates to be obtained for both watersheds. With these instantaneous peak flows, flow calculations were made for different return periods, and the changes between those determined with observed data from the DGA and with simulated data for the periods 1991-2020 and 2025-2054 were analyzed. These models were not able to accurately predict peak flows. Comparing the two periods, there are various changes depending on the climate change model used. In the case of the Carampangue River, increases of up to 37% were observed for 100-year return period flows, while another model showed reductions of up to 33% for flows with the same return period. For the Quepe River, there is also a spectrum of variations, ranging from a 39% increase to a 21% decrease for the 100-year return period flow.
Description
Tesis presentada para optar al título de Ingeniero Civil
Keywords
Caudales, Hidrología, Cambios climáticos, Obras públicas