Compensación Serie en Sistemas de Transmisión.
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
En los últimos años, el crecimiento sostenido de la demanda eléctrica y la incorporación de energías renovables han hecho imprescindible reforzar la estabilidad de tensión en redes de transmisión. Una de las estrategias más utilizadas es la compensación serie en las líneas a través de bancos de capacitores, ya sean fijos (FSC) o controlados (TCSC, SSSC). Esta técnica mejora el perfil de voltaje y la capacidad de transferencia, pero también introduce desafíos técnicos, como la ferroresonancia, resonancia subsíncrona y problemas en los esquemas de protección. En Chile, proyectos como Kimal–Polpaico han optado por FSC, dados sus menores costos y simplicidad constructiva.
Dado lo anterior en este trabajo se desarrollan simulaciones en DIgSILENT PowerFactory sobre el sistema IEEE de 39 barras, abordando el comportamiento en estado estacionario y frente a distintos tipos de cortocircuito. Como resultado se verifica que el perfil de voltaje se mantiene entre 0,95 y 1,05 p.u. en condiciones de máxima demanda, y se identifican puntos de posible colapso utilizando curvas Q–V y P–V. En el análisis dinámico se evalúan sobretensiones, corrientes máximas, frecuencia y velocidad de rotor durante fallas trifásicas, monofásicas y bifásicas, lo que permite identificar las condiciones más críticas para el sistema y evaluar su respuesta ante distintos tipos de perturbaciones. Por otro lado, los barridos de impedancia en función de la frecuencia revelan la existencia de posibles modos subsíncronos peligrosos, por lo cual se recomienda el uso de resistencias de amortiguamiento y filtros sintonizados a las frecuencias definidas. Además, se valida la necesidad de sistemas de bypass rápidos para proteger los bancos ante fallas internas, evitando así disparos indebidos de los relés de distancia. Estos resultados permiten maximizar los beneficios técnicos de la compensación serie fija, mitigando sus riesgos asociados y optimizando la estabilidad del sistema durante perturbaciones.
In recent years, the sustained growth in electricity demand and the integration of renewable energy sources have made it essential to reinforce voltage stability in transmission networks. One of the most widely used strategies is series compensation of transmission lines through capacitor banks, either fixed (FSC) or controlled (TCSC, SSSC). This technique improves voltage profile and power transfer capability but also introduces technical challenges such as ferroresonance, subsynchronous resonance, and protection scheme issues. In Chile, projects such as Kimal–Polpaico have opted for FSC due to its lower costs and simpler construction. In this context, simulations were carried out in DIgSILENT PowerFactory using the IEEE 39 bus system, analyzing both steady-state operation and system response under different types of short circuits. The results show that the voltage profile remains within 0.95 to 1.05 p.u. under peak demand conditions, and potential voltage collapse points are identified using Q–V and P–V curves. The dynamic analysis evaluates overvoltages, peak currents, frequency, and rotor speed during three phase, single-phase, and two-phase faults, allowing identification of the most critical conditions and assessment of the system's response to various disturbances. Additionally, impedance sweeps as a function of frequency reveal the presence of potentially harmful subsynchronous modes, highlighting the need for damping resistors and filters tuned to the identified frequencies. The study also confirms the necessity of fast bypass systems to protect the capacitor banks from internal faults, thereby preventing unwanted distance relay operations. These results help maximize the technical benefits of fixed series compensation while mitigating its associated risks and optimizing system stability during disturbances.
In recent years, the sustained growth in electricity demand and the integration of renewable energy sources have made it essential to reinforce voltage stability in transmission networks. One of the most widely used strategies is series compensation of transmission lines through capacitor banks, either fixed (FSC) or controlled (TCSC, SSSC). This technique improves voltage profile and power transfer capability but also introduces technical challenges such as ferroresonance, subsynchronous resonance, and protection scheme issues. In Chile, projects such as Kimal–Polpaico have opted for FSC due to its lower costs and simpler construction. In this context, simulations were carried out in DIgSILENT PowerFactory using the IEEE 39 bus system, analyzing both steady-state operation and system response under different types of short circuits. The results show that the voltage profile remains within 0.95 to 1.05 p.u. under peak demand conditions, and potential voltage collapse points are identified using Q–V and P–V curves. The dynamic analysis evaluates overvoltages, peak currents, frequency, and rotor speed during three phase, single-phase, and two-phase faults, allowing identification of the most critical conditions and assessment of the system's response to various disturbances. Additionally, impedance sweeps as a function of frequency reveal the presence of potentially harmful subsynchronous modes, highlighting the need for damping resistors and filters tuned to the identified frequencies. The study also confirms the necessity of fast bypass systems to protect the capacitor banks from internal faults, thereby preventing unwanted distance relay operations. These results help maximize the technical benefits of fixed series compensation while mitigating its associated risks and optimizing system stability during disturbances.
Description
Tesis presentada para optar al título de Ingeniero/a Civil Eléctrico/a.
Keywords
Transmisión de energía eléctrica, Redes eléctricas, Simulación por computadores