Producción de metanol a partir de hidrógeno verde en la zona Austral utilizando Aspen Plus.
Loading...
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción.
Abstract
Chile ha desarrollado una ambiciosa estrategia nacional promoviendo el uso y producción del hidrógeno verde a gran escala para cumplir con los objetivos de carbono neutralidad trazados al año 2050. Dentro de los principales usos del hidrógeno verde destaca la producción de compuestos químicos como el amoniaco y el metanol. El metanol destaca por su uso en la industria química para producir compuestos destacando el formaldehído. También se utiliza en materiales de construcción, disolventes, equipos médicos, compuestos farmacéuticos, fabricación de turbinas eólicas, entre otros. En el último tiempo destaca su uso como combustible en barcos y vehículos ya que su emisión de material particulado es casi nula. En el contexto de la transición energética y el establecimiento de una demanda sostenida de hidrógeno verde, en el presente proyecto de tesis se busca estudiar y analizar los aspectos técnicos y económicos de la producción de metanol verde en una planta ubicada en la zona Austral de Chile, Magallanes. Del estudio bibliográfico se identificaron las principales características del proceso de síntesis de metanol verde y se utilizaron para simular el proceso, asumiendo que las materias primas, como lo son el hidrógeno verde y el dióxido de carbono, son obtenidas de proveedores. La planta se dimensionó tomando como referencia la producción de hidrógeno verde basada en una alimentación de electricidad renovable obtenida de un parque eólico de capacidad de 30 MW, obteniendo como alimentación al proceso de síntesis metanol 4.480 t/año H2 verde y 32.597 t/año CO2, dando como producción final 22.265 t/año CH3OH verde con una pureza del 97,3%. Se obtuvo una conversión de una pasada del 14% y una conversión global del 93%. Además, se determinó que para producir 1 tonelada de metanol verde en esta planta se necesitan 0,201 toneladas de hidrógeno verde, 1,464 toneladas de dióxido de carbono, 3,60 m3 de agua de refrigeración y 0,291 MWh de electricidad renovable. Del análisis económico, basándose en las metodologías de Towler y Aspen Economics para el cálculo de costos de la planta, la factibilidad del proyecto se analizó para 5 escenarios diferentes: Caso 1) pesimista donde el precio del hidrógeno verde es de 5.500 USD/t; Caso 2) conservador donde el precio del hidrógeno verde es de 3.000 USD/t; Caso 3) optimista donde el precio del hidrógeno verde es de 2.000 USD/t; Caso 4) proyección Magallanes 2030 donde el recio del hidrógeno verde es de 1.300 USD/t; Caso 5) proyección Magallanes 2050 donde el precio del hidrógeno verde es de 1.000 USD/t. Se concluyo que la viabilidad económica del proyecto depende mayoritariamente del costo del H2 verde, solo siendo competitivo para los Casos 4) y 5). Esto se ve reflejado en los precios de venta del metanol verde obtenido para los casos mencionados. Si el proyecto considerará la producción de H2 verde en el proceso, el análisis de sensibilidad variando el costo de la electricidad renovable arrojaría valores muy distintos a los obtenidos en este trabajo, ya que este parámetro representaría el mayor costo del proceso y repercutiría significativamente en el precio final del metanol. Lo anterior sumado a que los bonos de carbono podrían aumentar el precio del metanol convencional, generando un panorama competitivo para el metanol verde.
Chile has developed an ambitious national strategy promoting the use and production of green hydrogen on a large scale to meet the carbon neutrality goals set for the year 2050. Among the main uses of green hydrogen is the production of chemical compounds such as ammonia and methanol. Methanol stands out for its use in the chemical industry to produce compounds such as formaldehyde. It is also used in construction materials, solvents, medical equipment, pharmaceutical compounds, wind turbine manufacturing, among others. In recent times, it has been used as fuel in ships and vehicles, since its emission of particulate matter is almost nil. In the context of the energy transition and the establishment of a sustained demand for green hydrogen, this thesis project seeks to study and analyze the technical and economic aspects of green methanol production in a plant located in the southern area of Chile, Magallanes. The main characteristics of the green methanol synthesis process were identified from the bibliographic study and used to simulate the process, assuming that the raw materials, such as green hydrogen and carbon dioxide, are obtained from suppliers. The plant was sized taking as reference the production of green hydrogen based on a renewable electricity supply obtained from a wind farm with a capacity of 30 MW, obtaining as feed to the methanol synthesis process 4,480 t/year green H2 and 32,597 t/year CO2, giving as final production 22,265 t/year green CH3OH with a purity of 97.3%. A one-pass conversion of 14% and an overall conversion of 93% was obtained. In addition, it was determined that 0.201 tons of green hydrogen, 1.464 tons of carbon dioxide, 3.60 m3 of cooling water and 0.291 MWh of renewable electricity are required to produce 1 ton of green methanol in this plant. From the economic analysis, based on Towler and Aspen Economics methodologies for plant costing, the feasibility of the project was analyzed for 5 different scenarios: Case 1) pessimistic where the green hydrogen price is 5,500 USD/t; Case 2) conservative where the green hydrogen price is 3,000 USD/t; Case 3) optimistic where the green hydrogen price is 2,000 USD/t; Case 4) Magallanes 2030 projection where the green hydrogen price is 1,300 USD/t; Case 5) Magallanes 2050 projection where the green hydrogen price is 1,000 USD/t. It was concluded that the economic viability of the project depends mainly on the cost of green H2, only being competitive for Case 4) and 5). This is reflected in the sales prices of the green methanol obtained for the mentioned cases. If the project will consider the production of green H2 in the process, the sensitivity analysis varying the cost of renewable electricity would yield very different values from those obtained in this work, since this parameter would represent the highest cost of the process and would have a significant impact on the final price of methanol. This, added to the fact that carbon credits could increase the price of conventional methanol, generating a competitive scenario for green methanol.
Chile has developed an ambitious national strategy promoting the use and production of green hydrogen on a large scale to meet the carbon neutrality goals set for the year 2050. Among the main uses of green hydrogen is the production of chemical compounds such as ammonia and methanol. Methanol stands out for its use in the chemical industry to produce compounds such as formaldehyde. It is also used in construction materials, solvents, medical equipment, pharmaceutical compounds, wind turbine manufacturing, among others. In recent times, it has been used as fuel in ships and vehicles, since its emission of particulate matter is almost nil. In the context of the energy transition and the establishment of a sustained demand for green hydrogen, this thesis project seeks to study and analyze the technical and economic aspects of green methanol production in a plant located in the southern area of Chile, Magallanes. The main characteristics of the green methanol synthesis process were identified from the bibliographic study and used to simulate the process, assuming that the raw materials, such as green hydrogen and carbon dioxide, are obtained from suppliers. The plant was sized taking as reference the production of green hydrogen based on a renewable electricity supply obtained from a wind farm with a capacity of 30 MW, obtaining as feed to the methanol synthesis process 4,480 t/year green H2 and 32,597 t/year CO2, giving as final production 22,265 t/year green CH3OH with a purity of 97.3%. A one-pass conversion of 14% and an overall conversion of 93% was obtained. In addition, it was determined that 0.201 tons of green hydrogen, 1.464 tons of carbon dioxide, 3.60 m3 of cooling water and 0.291 MWh of renewable electricity are required to produce 1 ton of green methanol in this plant. From the economic analysis, based on Towler and Aspen Economics methodologies for plant costing, the feasibility of the project was analyzed for 5 different scenarios: Case 1) pessimistic where the green hydrogen price is 5,500 USD/t; Case 2) conservative where the green hydrogen price is 3,000 USD/t; Case 3) optimistic where the green hydrogen price is 2,000 USD/t; Case 4) Magallanes 2030 projection where the green hydrogen price is 1,300 USD/t; Case 5) Magallanes 2050 projection where the green hydrogen price is 1,000 USD/t. It was concluded that the economic viability of the project depends mainly on the cost of green H2, only being competitive for Case 4) and 5). This is reflected in the sales prices of the green methanol obtained for the mentioned cases. If the project will consider the production of green H2 in the process, the sensitivity analysis varying the cost of renewable electricity would yield very different values from those obtained in this work, since this parameter would represent the highest cost of the process and would have a significant impact on the final price of methanol. This, added to the fact that carbon credits could increase the price of conventional methanol, generating a competitive scenario for green methanol.
Description
Memoria de Título presentada para optar al título profesional de Ingeniero Civil Químico.