Diseño y evaluación conceptual de arquitecturas de misiones espaciales para fines de comunicación sobre el territorio chileno.
Loading...
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
El objetivo de este trabajo fue el diseño y evaluación de distintas opciones de arquitecturas de misiones espaciales, estas arquitecturas son planteadas con la finalidad de poder habilitar redes de comunicaciones satelitales sobre el país de Chile, tanto para sus regiones continentales como sus territorios insulares. El enfoque de estudio del trabajo se concentra en la justificación detrás de la idea de habilitar el sistema planteado, para luego pasar a presentar arquitecturas de este. Las arquitecturas son definidas como elementos que componen al sistema e indican las ventajas comparativas de escoger la opción presentada frente a otras posibles opciones. El presente trabajo se enfoca en dimensionar a grandes rasgos, la necesidad, características y evaluar posibles opciones que se tienen para poder habilitar un sistema de comunicaciones satelitales soberano. Se plantea el tipo de redes de comunicaciones a habilitar, esto se estima mediante el estudio estadístico de la penetración de distintas formas de comunicación dentro de la población. El estudio de la necesidad para un sistema satelital de comunicaciones fue desarrollado mediante la utilización de datos de carácter abierto y actuales sobre la cantidad de población y hogares de cada región. Junto con la utilización de informes de acceso y uso del internet, se proyecta la necesidad del servicio en cantidad de hogares y ancho de banda. Luego se plantea la arquitectura del sistema, esto mediante el estudio de sistemas espaciales que cumplen roles similares, extrayendo parámetros de funcionamiento como ancho de banda y capacidades de propulsión, estos fueron asociadas a los parámetros físicos de la plataforma satelital, pudiendo generar parámetros de funcionamiento generales para el dimensionamiento y planteamiento de arquitecturas propias. Similarmente, se generaron parámetros orbitales y arquitecturas terrestres mediante el estudio de sistemas similares al propuesto. Finalmente, procede a la simulación y obtención de datos de las arquitecturas mediante la creación de un algoritmo dentro del software FreeFlyer, cuyos datos son procesados mediante un algoritmo de Python, evaluando el funcionamiento del sistema diseñado. Los resultados del trabajo fueron claros en el dimensionamiento de la necesidad y evaluación sobre el flujo de caja del sistema planteado, con necesidades proyectadas de hasta 236,833 clientes y con proyecciones de ganancias de $529[MUSD] para los primeros 15 años de funcionamiento se tiene una clara apertura a una red de comunicaciones satelitales soberana. Los resultados del planteamiento de la arquitectura dieron resultados mixtos, la metodología utilizada permitió el planteamiento satisfactorio de satélites pequeños, de pesos aproximados de 100[kg], permitiendo dimensionar características claves como la máxima cantidad de conexiones simultáneas por satélite. Pero fue menos satisfactorio a la hora de dimensionar satélites de masas superiores a 500[kg] principalmente debido a falta de documentación abierta y reciente. Finalmente, el desarrollo de los algoritmos de simulación y procesamiento de datos funcionan lo suficientemente bien para permitir cortas simulaciones de una cantidad limitada de satélites, pero es claro que estas herramientas requieren de futuras iteraciones para poder ser consideradas adecuadas para obtención de datos y procesamientos de estos durante periodos de tiempo extendidos. Se concluye que el sistema, según lo presentado, es viable, pero la evaluación de este requiere optimizar la herramienta de simulación, principalmente para periodos de tiempo extensivos, lo anterior junto al estudio más profundo de sistemas satelitales de comunicaciones recientes que superen los 500[kg], principalmente satélites geoestacionarios. Futuros trabajos deben enfocarse en las herramientas de simulación y recopilar información específica sobre satélites de comunicación sobre los 500[kg].
The objective of this work was the design and evaluation of different space mission architecture options. These architectures are proposed to enable satellite communication networks over Chile, encompassing both its continental regions and island territories. The study's focus centers on justifying the rationale for implementing the proposed system, followed by presenting its architectures. Architectures are defined as the system's constituent elements, highlighting the comparative advantages of the chosen option over other alternatives. This work focuses on broadly sizing the need, defining characteristics, and evaluating potential options for enabling a sovereign satellite communication system. The types of communication networks to be enabled were determined through statistical analysis of the penetration rates of different communication methods within the population. The need assessment for a satellite communication system was developed using current open data on the population and number of households per region. By incorporating reports on internet access and usage, the service demand in terms of number of households and required bandwidth was projected. Subsequently, the system architecture was defined by studying existing space systems with similar roles. Operational parameters such as bandwidth and propulsion capabilities were extracted and linked to the physical parameters of the satellite platform, enabling the generation of general operational parameters for sizing and proposing custom architectures. Similarly, orbital parameters and ground architectures were generated by studying systems analogous to the proposed one. Finally, the architectures were simulated and data was obtained by creating an algorithm within the FreeFlyer software. This data was processed using a Python algorithm to evaluate the designed system's performance. The results clearly sized the need and evaluated the cash flow of the proposed system. Projected needs of up to 236,833 customers and projected profits of $529 million USD over the first 15 years of operation demonstrate a clear opening for a sovereign satellite communication network. The results of the architecture proposal were mixed. The methodology used successfully enabled the proposal of small satellites, with approximate weights of 100 kg, allowing the sizing of key characteristics like the maximum number of simultaneous connections per satellite. However, it was less satisfactory for sizing satellites with masses exceeding 500 kg, primarily due to a lack of recent open documentation. Lastly, the developed simulation and data processing algorithms function sufficiently well to allow short simulations of a limited number of satellites. However, it is clear that these tools require future iterations to be considered adequate for data acquisition and processing over extended periods. It is concluded that the system, as presented, is viable. However, its evaluation requires optimizing the simulation tool, primarily for extensive time periods. This must be coupled with a deeper study of recent communication satellite systems exceeding 500 kg, mainly geostationary satellites. Future work should focus on the simulation tools and gathering specific information on communication satellites over 500 kg.
The objective of this work was the design and evaluation of different space mission architecture options. These architectures are proposed to enable satellite communication networks over Chile, encompassing both its continental regions and island territories. The study's focus centers on justifying the rationale for implementing the proposed system, followed by presenting its architectures. Architectures are defined as the system's constituent elements, highlighting the comparative advantages of the chosen option over other alternatives. This work focuses on broadly sizing the need, defining characteristics, and evaluating potential options for enabling a sovereign satellite communication system. The types of communication networks to be enabled were determined through statistical analysis of the penetration rates of different communication methods within the population. The need assessment for a satellite communication system was developed using current open data on the population and number of households per region. By incorporating reports on internet access and usage, the service demand in terms of number of households and required bandwidth was projected. Subsequently, the system architecture was defined by studying existing space systems with similar roles. Operational parameters such as bandwidth and propulsion capabilities were extracted and linked to the physical parameters of the satellite platform, enabling the generation of general operational parameters for sizing and proposing custom architectures. Similarly, orbital parameters and ground architectures were generated by studying systems analogous to the proposed one. Finally, the architectures were simulated and data was obtained by creating an algorithm within the FreeFlyer software. This data was processed using a Python algorithm to evaluate the designed system's performance. The results clearly sized the need and evaluated the cash flow of the proposed system. Projected needs of up to 236,833 customers and projected profits of $529 million USD over the first 15 years of operation demonstrate a clear opening for a sovereign satellite communication network. The results of the architecture proposal were mixed. The methodology used successfully enabled the proposal of small satellites, with approximate weights of 100 kg, allowing the sizing of key characteristics like the maximum number of simultaneous connections per satellite. However, it was less satisfactory for sizing satellites with masses exceeding 500 kg, primarily due to a lack of recent open documentation. Lastly, the developed simulation and data processing algorithms function sufficiently well to allow short simulations of a limited number of satellites. However, it is clear that these tools require future iterations to be considered adequate for data acquisition and processing over extended periods. It is concluded that the system, as presented, is viable. However, its evaluation requires optimizing the simulation tool, primarily for extensive time periods. This must be coupled with a deeper study of recent communication satellite systems exceeding 500 kg, mainly geostationary satellites. Future work should focus on the simulation tools and gathering specific information on communication satellites over 500 kg.
Description
Tesis presentada para optar al titulo de Ingeniero/a Civil Aeroespacial.
Keywords
Comunicación Análisis de redes, Satélites, Algoritmos