Estudio del aumento del potencial de almacenamiento de cerezas (Prunus avium L.) cv. Regina a partir de la aplicación de ultrasonido y nano burbujas
Loading...
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
El presente estudio tuvo como objetivo evaluar el impacto de dos tecnologías emergentes —ultrasonido y nanoburbujas — sobre la calidad postcosecha de cerezas (Prunus avium L.) cv. ‘Regina’. La investigación responde a la necesidad de alternativas sostenibles al uso intensivo de fungicidas sintéticos, especialmente en el contexto de exportaciones de larga distancia como las dirigidas al mercado asiático.
Se aplicaron nueve tratamientos postcosecha: tres niveles de potencia de ultrasonido (30, 100 y 360W por 30s respectivamente) y nanoburbujas (generadas con O2 ,CO2 y O3), además de controles convencionales (positivo con fludioxonil, negativo sin tratamiento y grupo blanco con solo agua). Las cerezas se almacenaron a 0 ± 0.5 °C por un período de hasta 45 días, replicando condiciones reales de transporte marítimo.
Se evaluaron parámetros físicos (resistencia mecánica, calibre, masa grupal), químicos (sólidos solubles, acidez titulable, tasa de respiración, fuga de electrolitos), de color (CIELab externo e interno) y microbiológicos (recuento de aerobios mesófilos, mohos y levaduras). Se aplicaron técnicas estadísticas multivariadas como análisis de componentes principales (ACP), correlaciones, y el análisis de varianza (ANDEVA) (p<0.05) para integrar los parámetros de calidad de fruta analizados y determinar el efecto de los tratamientos. Los resultados mostraron que ultrasonido y nanoburbujas son alternativas viables al fungicida fludioxonil. El ultrasonido a 30W fue el tratamiento más eficaz para conservar resistencia mecánica, masa grupal y reducir carga microbiana, destacando por su efecto suave sobre la estructura celular. En contraste, 360W mostró efectos negativos sobre el color. Entre las nanoburbujas, las de CO₂ destacaron por su capacidad para conservar color y estabilidad química, mientras que las de O₃ mantuvieron una alta carga microbiana al final del almacenamiento. En conjunto, el ultrasonido a 30W y las nanoburbujas de CO₂ fueron los tratamientos más efectivos para prolongar la vida útil y calidad del fruto, posicionándose como opciones sustentables frente a fungicidas sintéticos.
The present study aimed to evaluate the impact of two emerging technologies— ultrasound and nanobubbles—on the postharvest quality of ‘Regina’ sweet cherries (Prunus avium L.). This research responds to the need for sustainable alternatives to the intensive use of synthetic fungicides, particularly in the context of long-distance exports such as those bound for the Asian market. Nine postharvest treatments were applied: three ultrasound power levels (30, 100, and 360 W for 30 seconds each) and nanobubbles generated with O₂, CO₂, and O₃, along with conventional controls (a positive control with fludioxonil, a negative control without treatment, and a blank group treated only with water). Cherries were stored at 0 ± 0.5 °C for up to 45 days, replicating real maritime transport conditions. Physical (mechanical resistance, fruit size, mass), chemical (soluble solids, titratable acidity, respiration rate, electrolyte leakage), color (external and internal CIELab), and microbiological parameters (mesophilic aerobic counts, molds, and yeasts) were evaluated. Multivariate statistical techniques such as principal component analysis (PCA), correlations, and analysis of variance (ANOVA) (p<0.05) were applied to integrate the fruit quality parameters analyzed and determine treatment effects. Results indicated that ultrasound and nanobubbles are viable alternatives to the fungicide fludioxonil. Ultrasound at 30 W was the most effective treatment for preserving mechanical resistance, batch mass, and reducing microbial load, highlighting its gentle effect on cell structure. In contrast, 360 W negatively affected fruit color. Among the nanobubbles, CO₂ demonstrated the best performance in maintaining color and chemical stability, while O₃ nanobubbles retained a high microbial load at the end of storage. Overall, ultrasound at 30 W and CO₂ nanobubbles were the most effective treatments for extending fruit shelf life and quality, positioning themselves as sustainable alternatives to synthetic fungicides.
The present study aimed to evaluate the impact of two emerging technologies— ultrasound and nanobubbles—on the postharvest quality of ‘Regina’ sweet cherries (Prunus avium L.). This research responds to the need for sustainable alternatives to the intensive use of synthetic fungicides, particularly in the context of long-distance exports such as those bound for the Asian market. Nine postharvest treatments were applied: three ultrasound power levels (30, 100, and 360 W for 30 seconds each) and nanobubbles generated with O₂, CO₂, and O₃, along with conventional controls (a positive control with fludioxonil, a negative control without treatment, and a blank group treated only with water). Cherries were stored at 0 ± 0.5 °C for up to 45 days, replicating real maritime transport conditions. Physical (mechanical resistance, fruit size, mass), chemical (soluble solids, titratable acidity, respiration rate, electrolyte leakage), color (external and internal CIELab), and microbiological parameters (mesophilic aerobic counts, molds, and yeasts) were evaluated. Multivariate statistical techniques such as principal component analysis (PCA), correlations, and analysis of variance (ANOVA) (p<0.05) were applied to integrate the fruit quality parameters analyzed and determine treatment effects. Results indicated that ultrasound and nanobubbles are viable alternatives to the fungicide fludioxonil. Ultrasound at 30 W was the most effective treatment for preserving mechanical resistance, batch mass, and reducing microbial load, highlighting its gentle effect on cell structure. In contrast, 360 W negatively affected fruit color. Among the nanobubbles, CO₂ demonstrated the best performance in maintaining color and chemical stability, while O₃ nanobubbles retained a high microbial load at the end of storage. Overall, ultrasound at 30 W and CO₂ nanobubbles were the most effective treatments for extending fruit shelf life and quality, positioning themselves as sustainable alternatives to synthetic fungicides.
Description
Tesis presentada para optar al grado de Magister en Ingeniería Agrícola
Keywords
Cerezas - Calidad, Fungicidas - Pruebas, Ultrasonido