Mixed finite element methods for time-dependent wave propagation problems elastodynamics and elastoacoustics = Métodos de elementos finitos mixtos para problemas de propagación de ondas dependientes del tiempo : Elastodinámica y elastoacústica

dc.contributor.advisorGatica Pérez, Gabriel N.es
dc.contributor.authorGarcía Vera, Carlos Mauricioes
dc.date.accessioned2018-05-07T12:32:54Z
dc.date.accessioned2019-11-28T15:50:14Z
dc.date.accessioned2024-05-15T16:34:50Z
dc.date.accessioned2024-08-28T22:39:21Z
dc.date.available2018-05-07T12:32:54Z
dc.date.available2019-11-28T15:50:14Z
dc.date.available2024-05-15T16:34:50Z
dc.date.available2024-08-28T22:39:21Z
dc.date.issued2017
dc.descriptionTesis presentada para optar al grado de Doctor en Ciencias Aplicadas con mención en Ingeniería Matemática.es
dc.description.abstractEsta tesis apunta a la formulación, análisis e implementación de métodos de elementos finitos mixtos para los modelos de propagación de ondas dependientes del tiempo que surgen en elastodinámica y elastoacústica. El análisis de la dependencia del tiempo de las formulaciones de estos problemas es uno de los objetivos principales de esta tesis. Ello nos motiva a seguir el enfoque tradicional para este tipo de modelos evolutivos, el cual consiste en dividir el análisis en dos pasos: el primero tiene que ver con el esquema semidiscreto, en el que sólo el espacio es discretizado, mientras que el segundo se refiere al esquema completamente discreto, donde tanto el espacio como el tiempo son discretizados usando elementos finitos y diferencias finitas, respectivamente. Para el problema elastodinámico, las incógnitas de nuestra formulación son los tensores de esfuerzo y rotación, donde este último se introduce como un multiplicador de Lagrange que se encarga de la simetría del esfuerzo en un sentido débil. Una vez demostrado que la formulación es bien propuesta, introducimos una semidiscretización del problema utilizando una familia de elementos finitos mixtos que satisface las hipótesis usuales para el problema de elasticidad con simetría reducida, y luego probamos estimaciones de error abstractas. Por último, utilizamos el método de Newmark para obtener una versión totalmente discreta de nuestra formulación y derivar también las estimaciones de error correspondientes. Una característica interesante de nuestra formulación es el hecho que ella no involucra el desplazamiento, ya que éste se sustituye en términos del esfuerzo gracias a la ecuación de momento. Sin embargo, mostramos que esta incógnita puede ser recuperada fácilmente más tarde por medio de una fórmula de post-procesamiento, generando así una aproximación apropiada de ella. Además, una técnica de post-procesamiento similar permite obtener una aproximación numérica de la aceleración. Por otro lado, las incógnitas de la formulación para el problema de interacción fluidoestructura están dadas por el tensor de esfuerzo en el sólido y la presión en el fluido. Una vez probado que la formulación está bien propuesta, procedemos a construir un operador auxiliar apropiado cuyas propiedades son útiles para el análisis del esquema semidiscreto, y luego obtenemos las estimaciones de error correspondientes utilizando los elementos finitos mixtos de Arnold-Falk-Whinter en el sólido y los clásicos elementos de Lagrange en el fluido. El análisis del esquema totalmente discreto correspondiente para este problema se realiza en un capítulo aparte. Finalmente, observamos que para ambos problemas analizados en esta tesis hemos probado que los esquemas discretos son uniformemente estables con respecto a los parámetros de discretización, y hemos deducido las estimaciones de error asintóticas respectivas. probamos que son inmunes al fenómeno de bloqueo en el caso casi incompresible. Además, presentamos experimentos numéricos que apoyan los resultados teóricos e ilustran la robustez de cada método.es
dc.description.campusConcepciónes
dc.description.departamentoDepartamento de Ingeniería Matemáticaes
dc.description.facultadFacultad de Ciencias Físicas y Matemáticases
dc.identifier.urihttps://repositorio.udec.cl/handle/11594/2623
dc.language.isoeses
dc.publisherUniversidad de Concepciónes
dc.rightsCC BY-NC-ND 4.0 DEED Attribution-NonCommercial-NoDerivs 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMétodo de Elementos Finitoses
dc.subjectPropagación de Ondases
dc.titleMixed finite element methods for time-dependent wave propagation problems elastodynamics and elastoacoustics = Métodos de elementos finitos mixtos para problemas de propagación de ondas dependientes del tiempo : Elastodinámica y elastoacústicaen
dc.title.alternativeMétodos de elementos finitos mixtos para problemas de propagación de ondas dependientes del tiempo : Elastodinámica y elastoacústicaes
dc.typeTesises

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tesis_Mixed_finite_element.pdf
Size:
692.83 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections