Cox rings of K3 surfaces of Picard number three and four = Anillos de Cox de superficies K3 de número de Picard tres y cuatro.

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad de Concepción.

Abstract

En esta tesis estudiamos anillos de Cox de superficies K3 Mori dream, es decir superficies proyectivas suaves X con H1 (X, OX) = {0} y con clase canónica trivial cuyo anillo de Cox es finitamente generado. Hacia el 2009, comienza la investigación sobre los anillos de Cox de las superficies K3 con el trabajo de Artebani, Hausen y Laface [AHL10] y McKernan [McK10], donde los autores probaron independientemente que el anillo de Cox de una superficie K3 es finitamente generado si y sólo si su cono efectivo es poliedral, o equivalente si su grupo de automorfismos es finito. Las superficies K3 proyectivas con número de Picard ≥ 3 y con grupo de automorfismos finito han sido clasificadas, y se sabe que hay un número finito de familias con dicha propiedad. El objetivo principal de esta tesis es desarrollar técnicas y herramientas computacionales para calcular anillos de Cox de superficies K3 Mori dream, es decir encontrar generadores y relaciones para el anillo de Cox. Un primer resultado en esta dirección se basa en sucesiones exactas de tipo Koszul, el cual nos permite probar un teorema general para los anillos de Cox de superficies K3 (no necesariamente Mori dream), es decir demostramos que los grados de un conjunto minimal de generadores del anillo de Cox R(X) son o bien clases de (−2)-curvas, o bien clases de divisores nef los cuales son suma de a lo más tres elementos de la base

Description

Tesis para optar al grado de Doctora en Matemática.

Keywords

Anillos de Cox, Espacios de Hilbert, Curvas Elípticas

Citation

URI

Collections