Obtención de metabolitos fúngicos para la biosíntesis de nanopartículas con potencial aplicación en la industria de desinfectantes.
Loading...
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
Las nanopartículas (NPs) se definen como partículas de dimensiones comprendidas entre 1 a 100nm, las cuales poseen capacidades electrónicas, químicas, ópticas, magnéticas y térmicas específicas. Actualmente las NPs son sintetizadas con procesos químicos de alta demanda energética, liberando agentes tóxicos que son nocivos para el medio ambiente y la salud humana. Dentro de las opciones para resolver esta problemática, se encuentran la síntesis verde de NPs, la cual emplea agentes reductores de origen orgánico como plantas, bacterias, algas y hongos. Los hongos tienen la capacidad de secretar una amplia gama de moléculas y pigmentos capaces de producir reacciones de óxido-reducción en presencia de hidróxido de sodio y luz, por lo que son empleados para la síntesis verde de NPs con procesos de bajo requerimiento energético y sin producción de agentes contaminantes. El propósito para esta investigación es optimizar la producción de metabolitos coloreados extracelulares secretados por los hongos Antracophyllum discolor y Phylloporia boldo con el fin de producir y caracterizar las nanopartículas de plata (AgNPs) producidas por biosíntesis y finalmente, evaluar la actividad antimicrobiana para proyectar su utilización como un potencial desinfectante de superficies aplicable en la industria médica. Se obtuvo que el medio de cultivo y el valor de pH óptimo para producir metabolitos coloreados para P. boldo fue YMG-L a pH: 8.1 mientras que con A. discolor fue en medio PDB a pH: 7.5. La concentración óptima para la formación de AgNPs para ambas especies fue de 1mM de AgNO3. El tiempo óptimo de AgNPs se alcanzó a las 24hrs en ambas especies, detectándose por métodos espectrofotométricos y encontrando formas esféricas, granuladas y cristalinas de tamaños entre 5 a 50 nm por microscopía electrónica TEM. El análisis de FTIR permitió confirmar la presencia de grupos funcionales OH, C-OH, COO-, C-N, C=O, C-O-C y C-H. La actividad antibacteriana se evaluó con 6 cepas, donde las AgNPs mostraron inhibición del crecimiento bacteriano, pero los tratamientos combinados de AgNPs y Estreptomicina, mostraron zonas de inhibición potenciadas. Los resultados sugieren emplear estas AgNPs en el desarrollo de materiales antibacterianos para la industria médica.
Nanoparticles or NPs are defined as particles with dimensions ranging from 1 to 100 nm, which possess specific electronic, chemical, optical, magnetic and thermal capabilities. Currently, NPs are synthesized with chemical processes of high energy demand, releasing toxic agents that are harmful to the environment and human health. Among the options to solve this problem is the green synthesis of NPs, which employs reducing agents of organic origin such as plants, bacteria, algae, and fungi. Fungi can secrete a wide range of molecules and pigments capable of producing oxidation reduction reactions in the presence of sodium hydroxide and light, so they are used for the green synthesis of NPs with processes of low energy requirement and without production of pollutants. The purpose for this research is to optimize the production of extracellular colored metabolites secreted by the fungi Antracophyllum discolor and Phylloporia boldo to produce and characterize the AgNPs produced by biosynthesis and finally, to evaluate the antimicrobial activity to project their use as a potential surface disinfectant applicable in the medical industry. It was obtained that the optimal culture medium and pH value to produce colored metabolites for P. boldo was YMG-L at pH: 8.1 while with A. discolor it was in PDB medium at pH: 7.5. The optimum concentration for AgNPs formation for both species was 1mM AgNO3. The optimum time of AgNPs was reached at 24hrs in both species, being detected by spectrophotometric methods and finding spherical, granular and crystalline forms of sizes between 5 to 50 nm by TEM electron microscopy. FTIR analysis confirmed the presence of OH, C-OH, COO-, C-N, C=O, C-O-C and C-H functional groups. The antibacterial activity was evaluated with 6 strains, where AgNPs showed inhibition of bacterial growth, but the combined treatments of AgNPs and Streptomycin, showed enhanced inhibition zones. The results suggest the use of these AgNPs in the development of antibacterial materials for the medical industry.
Nanoparticles or NPs are defined as particles with dimensions ranging from 1 to 100 nm, which possess specific electronic, chemical, optical, magnetic and thermal capabilities. Currently, NPs are synthesized with chemical processes of high energy demand, releasing toxic agents that are harmful to the environment and human health. Among the options to solve this problem is the green synthesis of NPs, which employs reducing agents of organic origin such as plants, bacteria, algae, and fungi. Fungi can secrete a wide range of molecules and pigments capable of producing oxidation reduction reactions in the presence of sodium hydroxide and light, so they are used for the green synthesis of NPs with processes of low energy requirement and without production of pollutants. The purpose for this research is to optimize the production of extracellular colored metabolites secreted by the fungi Antracophyllum discolor and Phylloporia boldo to produce and characterize the AgNPs produced by biosynthesis and finally, to evaluate the antimicrobial activity to project their use as a potential surface disinfectant applicable in the medical industry. It was obtained that the optimal culture medium and pH value to produce colored metabolites for P. boldo was YMG-L at pH: 8.1 while with A. discolor it was in PDB medium at pH: 7.5. The optimum concentration for AgNPs formation for both species was 1mM AgNO3. The optimum time of AgNPs was reached at 24hrs in both species, being detected by spectrophotometric methods and finding spherical, granular and crystalline forms of sizes between 5 to 50 nm by TEM electron microscopy. FTIR analysis confirmed the presence of OH, C-OH, COO-, C-N, C=O, C-O-C and C-H functional groups. The antibacterial activity was evaluated with 6 strains, where AgNPs showed inhibition of bacterial growth, but the combined treatments of AgNPs and Streptomycin, showed enhanced inhibition zones. The results suggest the use of these AgNPs in the development of antibacterial materials for the medical industry.
Description
Tesis presentada para optar al título profesional de Biólogo
Keywords
Biosíntesis, Nanopartículas, Microbiología