Modelación DEM del mineral de cobre en la tolva del camión minero CAT 797F.
Loading...
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Concepción
Abstract
El transporte de mineral en la minería a cielo abierto es un componente crítico y costoso del ciclo productivo. Los camiones mineros de gran tonelaje, como el CAT 797F, operan bajo condiciones dinámicas severas, incluyendo impactos sobre la tolva durante la carga, además de vibraciones que repercuten en el chasis dado el terreno irregular, lo que puede comprometer su integridad estructural y vida útil. La caracterización precisa de estas cargas dinámicas es fundamental para optimizar el diseño de los vehículos e implementar estrategias de mantenimiento predictivo. Este estudio aborda la necesidad de cuantificar los esfuerzos transmitidos a la estructura del camión, sentando las bases para un análisis estructural más robusto.
Para analizar la dinámica del mineral, se empleó el Método de Elementos Discretos a través del software Rocky DEM 4. Se importó a Rocky DEM un modelo CAD detallado de la tolva del camión CAT 797F, para el proceso de simulado se consideran parámetros cruciales como la granulometría de las partículas, el coeficiente de rodadura calibrado, y las condiciones operativas de vibración (amplitud y frecuencia) y pendientes (subida y bajada). La metodología de post-procesado, implementada mediante un código en MATLAB R2018b, fue esencial para extraer las fuerzas y momentos generados por el mineral en la tolva y, mediante una simplificación a un modelo 2D de cuerpo rígido, calcular las reacciones localizadas en los puntos de apoyo del camión (cilindros hidráulicos A y B). Este enfoque permitió traducir las cargas dinámicas complejas en datos aplicables para futuros análisis estructurales detallados con el Método de Elementos Finitos (FEM).
Los resultados de la simulación revelaron la naturaleza dinámica y la magnitud de las fuerzas transmitidas a los apoyos de la tolva en las distintas fases operativas. Durante la carga, las reacciones verticales pico alcanzaron hasta 2099 kN en el apoyo Ay, siendo ligeramente mayores el caso sin barrido de material. En el movimiento horizontal, la amplitud de vibración de 0.01433 m resultó ser el caso más crítico, con reacciones verticales pico en Ay de 3611 kN y factores de amplificación de hasta 3.887 en el apoyo A, indicando una amplificación dinámica significativa. Para movimientos en bajada y subida, se observaron amplificaciones aún mayores en el apoyo B, alcanzando factores de hasta 7.59 y 7.40 respectivamente, lo que subraya la alta exigencia dinámica en este punto. La descarga, al ser un proceso más controlado, mostró fuerzas y momentos menos abruptos. En conclusión, el modelo DEM y la metodología de post-procesado demostraron ser herramientas efectivas para predecir y cuantificar las cargas dinámicas.
The transport of ore in open-pit mining is a critical and costly component of the production cycle. Large-tonnage mining trucks, such as the CAT 797F, operate under severe dynamic conditions, including impacts during loading and vibrations from irregular terrain, which can compromise their structural integrity and service life. Accurate characterization of these dynamic loads is fundamental for optimizing vehicle design and implementing predictive maintenance strategies. This study addresses the need to quantify the stresses transmitted to the truck's structure, laying the groundwork for a more robust structural analysis. To analyze the ore's dynamics, the Discrete Element Method (DEM) was employed using Rocky DEM 4 software. A detailed CAD model of the CAT 797F truck's dump body was imported into Rocky DEM, and crucial parameters such as particle size distribution, calibrated rolling friction coefficient, and operational conditions of vibration (amplitude and frequency) and slopes (uphill and downhill) were considered for the simulation process. The post-processing methodology, implemented via a MATLAB R2018b code, was essential for extracting the forces and moments generated by the ore in the dump body. Through a simplification to a 2D rigid body model, it was possible to calculate the localized reactions at the truck's support points (hydraulic cylinders A and B). This approach allowed for translating complex dynamic loads into data applicable for future detailed structural analyses using the Finite Element Method (FEM). The simulation results revealed the dynamic nature and magnitude of the forces transmitted to the dump body supports during different operational phases. During loading, peak vertical reactions reached up to 2099 kN at support Ay, with the case of no material spreading showing slightly higher values. In horizontal movement, a vibration amplitude of 0.01433 m proved to be the most critical case, with peak vertical reactions at Ay of 3611 kN and amplification factors up to 3.887 at support A, indicating significant dynamic amplification. For downhill and uphill movements, even greater amplifications were observed at support B, reaching factors of up to 7.59 and 7.40 respectively, which underscores the high dynamic demand at this point. Unloading, being a more controlled process, showed less abrupt forces and moments. In conclusion, the DEM model and the post processing methodology proved to be effective tools for predicting and quantifying dynamic loads.
The transport of ore in open-pit mining is a critical and costly component of the production cycle. Large-tonnage mining trucks, such as the CAT 797F, operate under severe dynamic conditions, including impacts during loading and vibrations from irregular terrain, which can compromise their structural integrity and service life. Accurate characterization of these dynamic loads is fundamental for optimizing vehicle design and implementing predictive maintenance strategies. This study addresses the need to quantify the stresses transmitted to the truck's structure, laying the groundwork for a more robust structural analysis. To analyze the ore's dynamics, the Discrete Element Method (DEM) was employed using Rocky DEM 4 software. A detailed CAD model of the CAT 797F truck's dump body was imported into Rocky DEM, and crucial parameters such as particle size distribution, calibrated rolling friction coefficient, and operational conditions of vibration (amplitude and frequency) and slopes (uphill and downhill) were considered for the simulation process. The post-processing methodology, implemented via a MATLAB R2018b code, was essential for extracting the forces and moments generated by the ore in the dump body. Through a simplification to a 2D rigid body model, it was possible to calculate the localized reactions at the truck's support points (hydraulic cylinders A and B). This approach allowed for translating complex dynamic loads into data applicable for future detailed structural analyses using the Finite Element Method (FEM). The simulation results revealed the dynamic nature and magnitude of the forces transmitted to the dump body supports during different operational phases. During loading, peak vertical reactions reached up to 2099 kN at support Ay, with the case of no material spreading showing slightly higher values. In horizontal movement, a vibration amplitude of 0.01433 m proved to be the most critical case, with peak vertical reactions at Ay of 3611 kN and amplification factors up to 3.887 at support A, indicating significant dynamic amplification. For downhill and uphill movements, even greater amplifications were observed at support B, reaching factors of up to 7.59 and 7.40 respectively, which underscores the high dynamic demand at this point. Unloading, being a more controlled process, showed less abrupt forces and moments. In conclusion, the DEM model and the post processing methodology proved to be effective tools for predicting and quantifying dynamic loads.
Description
Tesis presentada para optar al título de Ingeniero/a Civil Mecánico/a.
Keywords
Industria minera, Maquinaria minera, Mantenibilidad (Ingeniería)