Tesis Doctorado
Permanent URI for this collection
Browse
Browsing Tesis Doctorado by Subject "Alcohol"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identificación de residuos localizados en el dominio citoplasmático entre las regiones TM3 y TM4 críticos para la modulación alostérica de receptores de glicina y GABAa por propofol y etanol.(Universidad de Concepción., 2009) Moraga Cid, Gustavo Alonso; Aguayo Hernández, Luis GerardoA pesar de los extensos estudios realizados a lo largo de casi un siglo, los mecanismos involucrados en los efectos ejercidos por etanol y anestésicos generales sobre la función del SNC permanecen poco entendidos. En contraste a lo que ocurre con otras clases de drogas, los efectos de etanol y anestésicos generales fuéron por largo tiempo atribuidos a la acción en múltiples sitios inespecíficos localizados a nivel de la membrana plasmática. Sin embargo, a partir de la década de 1980 comenzó a cobrar vigor la hipótesis que propone a proteínas como blancos específicos de estos fármacos. En este contexto, los receptores para los neurotransmisores glicina (RGli) y acido γ-aminobutirico (RGABAA) han surgido como los blancos moleculares más importantes para los efectos ejercidos por etanol y anestésicos generales. La hipótesis actualmente aceptada para explicar los mecanismos moleculares por los cuales ocurren estos fenómenos de modulación, propone la existencia de potenciales sitios de interacción usados tanto por etanol como por anestésicos generales. Los residuos que componen estos potenciales sitios se encuentran localizados en las regiones transmembrana (TMs) del receptor, ubicación que les permite formar bolsillos o cavidades capaces de reconocer, con muy baja selectividad, una serie de moduladores estructuralmente divergentes. Por otra parte, evidencia reciente ha permitido generar una hipótesis alternativa. Ésta propone que la modulación del RGli está intrínsicamente ligada al grado de activación de las proteínas G. Estudios realizados en nuestro laboratorio permitieron sugerir que ésta modulación es producto de la interacción del heterodímero Gβγ con un grupo de residuos (316RFRRK320 y 385KK386) localizados en el dominio citoplasmático entre el TM3 y TM4 del RGli. Basados en estas observaciones, surgen una serie de interrogantes que necesitan ser respondidas, como por ejemplo, ¿Son estos sitios compartidos por otros moduladores alostéricos del RGli? o ¿Posee también este dominio intracelular residuos aminoacídicos determinantes para la sensibilidad del RGli a otros moduladores? ¿Existen residuos homólogos en la región citoplasmática de otros miembros de la superfamilia LGICs que cumplan un rol similar?De esta forma, el trabajo realizado en ésta tesis generó información que permitió contestar algunas de estas importantes interrogantes. Primero, abordamos el grado de selectividad de estos nuevos sitios descritos como críticos para etanol en términos de la sensibilidad a otros moduladores del RGli. Nuestros datos muestran que la mutación de estos residuos redujo significativamente la sensibilidad del RGli a etanol, sin alterar la capacidad del receptor de ser modulado por otros fármacos alostéricos, como n-alcoholes o anestésicos generales. Además, estudiamos el fenómeno de “cutoff” en una serie homóloga de n-alcoholes, el cual indirectamente podría dar cuenta de la presencia de una cavidad o bolsillo con un volumen determinado. En particular y a diferencia de lo reportado para los sitios transmembrana, estos residuos (316RFRRK320 y 385KK386) no formarían un bolsillo de unión, con un volumen aceptor determinado, debido a que el fenómeno de cutoff no sufrió modificaciones en los RGli hiposensibles a etanol. Estos observaciones muestran por primera vez que residuos importantes para la acción de etanol en el RGli, no son relevantes para la sensibilidad del receptor a otros moduladores alostéricos, lo que nos permite sugerir que este nuevo mecanismo de acción descrito para etanol, es de una naturaleza molecular diferente a los mecanismos utilizados por otros moduladores del RGli. Con estos datos en mente, es claro que existen residuos localizados en el dominio intracelular importantes para los efectos de etanol sobre el RGli, pero ¿es esta región importante para la acción de otros moduladores como anestésicos generales? Nuestros datos funcionales nos permiten sugerir un nuevo sitio para la acción del anestésico general intravenoso propofol, distinto a los descritos previamente, y más aún nos permiten sugerir por primera vez que la potenciación de las corrientes de glicina y GABA por propofol ocurre principalmente por una vía intracelular. Estas conclusiones se encuentran sostenidas por los datos obtenidos a través de tres estrategias experimentales independientes. Primero, utilizando estudios de mutagénesis sitio dirigida, realizados en los dominios citoplasmáticos de las subunidades α1 del RGli y α1 y β2 del RGABAA, determinamos que un residuo de Fenilalanina, localizado en regiones homólogas de la subunidades α1 del RGli (F380) y α1 del RGABAA (F385) es el responsable de la sensibilidad a propofol, mientras que la subunidad β2 del RGABAA no juega un rol crítico en la sensibilidad de este receptor a propofol. Estos sitios demostraron ser altamente selectivos para propofol, no resultando relevantes para la potenciación del receptor por otros moduladores alostéricos. Segundo, utilizando diálisis intracelular de proteínas con demostrada capacidad de unir propofol, determinamos que propofol debe alcanzar el espacio intracelular como un paso previo a la modulación de los RGli y RGABAA, tanto en sistemás recombinantes de expresión como en neuronas en cultivo. Tercero, utilizando análisis de registros de canal único determinamos que la sustitución de los residuos F380 en el RGli y F385 en el RGABAA redujo significativamente la potenciación de la probabilidad de apertura del canal, sin alterar sus parámetros cinéticos como el tiempo de apertura promedio y su conductancia. En conclusión, los datos generados en esta tesis nos permiten extender nuestro conocimiento acerca de los mecanismos involucrados en la modulación alostérica de los miembros de la superfamilia LGICs. Nuestros resultados nos permiten sugerir que el dominio citoplasmático mayor de los miembros de la familia LGICs, presenta residuos específicos y distintos para la acción de etanol y propofol. Estos resultados permiten además, iniciar nuevos estudios en la generación de drogas con minimos efectos indeseados.Item Presencia de aminoácidos básicos en el dominio citoplasmático de los receptores de glicina y GABAa son críticos para modulación por Gβy y etanol.(Universidad de Concepción., 2012) Castro Maldonado, Patricio Alejandro; Aguayo Hernández, Luis GerardoEl etanol es una de las drogas de abuso mas ampliamente utilizadas a nivel mundial generando cuantiosas pérdidas de dinero así como de vidas humanas debido a su consumo. ¿Cómo el etanol, a concentraciones fisiológicamente relevantes (< 100 mM), es capaz de producir sus efectos tanto a nivel sistémico como a nivel celular? y ¿cuáles son los determinantes para que estos efectos se produzcan? son aún desconocidos. Se ha descrito que esta droga modula a los receptores de glicina (R-Gli), GABAA (R-GABAA), GABAC (R-GABAC), serotonina tipo 3 (5-HT3) y nicotínicos de acetilcolina (R-nACh), los cuales pertenecen a la superfamilia de los canales iónicos activados por ligando (Cys-loop LGICs). Estudios realizados en animales han demostrado una importante participación de los receptores de R-Gli y RGABAA en algunos efectos sistémicos como la inducción de sueño, lo que da relevancia a su estudio, así como su participación en importantes funciones fisiológicas que van desde el control motor hasta la generación de complejas funciones cognitivas. Proteínas intracelulares también han sido vinculadas a los efectos del etanol, dentro de las cuales encontramos a las adenilil ciclasas (AC), la proteína quinisa A (PKA), la proteína quinasa C (PKC), la fosfolipasa C (PLC) y recientemente a proteínas G. Estos dos blancos para la acción del etanol (receptores y proteínas intracelulares) han sustentado la generación de dos hipótesis que han tratado de explicar los efectos de esta droga a nivel celular. La primera de ellas se refiere a la acción directa del etanol en los receptores tipo canales iónicos, mientras que la segunda hipótesis contempla una modulación indirecta de estos receptores a través de proteínas efectoras intracelulares, las cuales serían en primera instancia el blanco del etanol. La modulación del R-Gli por etanol ha sido ampliamente descrita y aceptada, a diferencia del R-GABAA, donde los numerosos estudios realizados no han logrado establecer un mecanismo de acción común. En el R-Gli se han identificado residuos claves de carácter básico (316-320, 385-386) presentes en el ICD, los cuales serían cruciales para que esta modulación se lleve a cabo. A su vez, la activación de Gβγ es crítica para la sensibilidad al etanol en este receptor. En el RGABAA existen sub-unidades que poseen agrupaciones de aminoácidos básicos homólogos a los encontrados en la sub-unidad α1 del R-Gli en su dominio intracelular, lo cual permite postular un mecanismo similar de modulación al encontrado en el R-Gli. Por lo anterior es que nos propusimos estudiar si residuos básicos presentes en los dominios intracelulares de los R-Gli y R-GABAA participan en la interacción y modulación efectuada por Gβγ y etanol. Para evaluar esta hipótesis realizamos experimentos de sobrexpresión de la subunidad α1 del R-Gli WT y mutantes del residuo 385K con aminoácidos con diferentes propiedades fisicoquímicas, encontrando que solo aminoácidos básicos (K y R) mantienen la sensibilidad a etanol no alterándose la sensibilidad a otros moduladores como neuroesteroides o anestésicos generales como α-xalona y propofol respectivamente, donde todas las mutantes se expresan y comportan farmacológicamente similares al receptor WT. Para el caso del R-GABAA, evaluamos la asociación de algunas de sus subunidades con Gβγ, encontrando un patrón gradual de unión, donde la subunidad α1 une Gβγ en forma similar a α1 del R-Gli; las subunidades γ2 y α6 lo hacen en menor grado, mientras que α4 no presenta unión. Posteriormente, decidimos construir una proteína quimérica entre las subunidades α1 del R-Gli y la subunidad γ2 del R-GABAA, lo cual identificó a 2 regiones importantes para la modulación por etanol en este receptor. Una de ellas comprende al dominio TM4, que tendría implicancia en el gating del canal, mientras la segunda ubicada en el dominio N-terminal del IL entre los residuos 309 y 313 sería importante para preservar una estructura α-hélice de la región. Finalmente, la posición homóloga a 385K en el R-Gli (408 en el receptor quimérico) es fundamental para reestablecer el efecto de etanol en el receptor α1-γ2. Todos estos hallazgos demuestran que la presencia de: i) un gating energéticamente favorable, ii) una estructura α-hélice en la región N-terminal de IL y iii) un residuo básico en la posición homóloga 385 del R-Gli son fundamentales para conferir sensibilidad a etanol en este receptor. En conclusión, podemos decir que el carácter básico del residuo 385 es crucial para la sensibilidad a etanol en α1 R-Gli, mientras el R-GABAA posee subunidades capaces de interaccionar con Gβγ en forma similar a α1 R-Gli, lo cual podría revelar un mecanismo de modulación similar para ambos receptores.