Teorías Chern-Simons y Born-Infeld de la gravedad y álgebras tipo Maxwell

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad de Concepción.

Abstract

Esta Tesis se propone la construcción de una teoría de Einstein-Lovelock de la Gravedad invariante bajo las álgebras tipo Maxwell M, la cual contiene al Lagrangiano de Einstein- Hilbert tanto en dimensiones impares como en dimensiones pares. Para llevar a cabo dicha construcción será necesario introducir ciertas herramientas matemáticas conocidas como S-expansión. Este mécanismo consiste básicamente en un método para obtener nuevas álgebras de Lie a partir de una dada mediante un semigrupo abeliano (Capítulo 2). En el Capítulo 3 se estudiará Relatividad General en el formalismo de Cartan intro- duciendo la nociones de vielbein y conexión de spin. En especial, se estudiará la acción de Einstein-Hilbert y se analizará su invariancia bajo el grupo de Poincaré. Posteriormente, se introducirá la teoría de Lanczos-Lovelock y se estudiará brevemente el problema de los coeficiente introduciendo así las teorías Chern-Simons y Born-Infeld de la Gravedad (Capítulo 4 y 5).En el Capítulo 6 y 7 se hará uso del procedimiento de S-expansión para obtener álgebras tipo Maxwell M y sus respectivas subálgebras LM. Se estudiará bajo que condiciones, las teorías Chern-Simons y Born-Infeld de la Gravedad invariante bajo las diveras álgebras tipo Maxwell, conducen al Lagrangianos de Einstein-Hilbert. Finalmente, en el Capítulo 8 se estudiará una acción de Einstein-Lovelock la cual con- ducen en dimensiones impares a la teoría de Einstein-Chern-SimonsM-valuada y en dimensiones pares a la teoría de Einstein-Born-Infeld LM-valuada.

Description

Tesis Magíster en Ciencias, mención en Física Universidad de Concepción 2013

Keywords

Álgebra, Álgebra Abstracta, Ecuaciones, Relatividad General (Física), Funciones Algebraicas

Citation

URI

Collections